Monday, November 11, 2024

Day 1 - 30 days R learning plan for gganimate, plotly, and rgl, and their combination

 


Here’s a step-by-step tutorial for Day 1 to get you started with plotly in R. This guide will walk you through the installation process and teach you how to create basic interactive plots like scatter, bar, and line charts.


Step 1: Install and Load plotly

1.     Open RStudio (or any R environment): Make sure you have an R environment ready to work with.

2.     Install plotly: If you haven’t installed plotly yet, use the following code:

install.packages("plotly")

3.     Load plotly: Load the library so that you can use it in your session.

library(plotly)

Step 2: Create Basic Interactive Plots

A. Scatter Plot

1.     Create Sample Data: For the scatter plot, let’s create a simple dataset to plot.

# Sample data
x <- c(1, 2, 3, 4, 5)
y <- c(10, 15, 13, 17, 20)

2.     Create a Scatter Plot with plot_ly(): Use plot_ly() to create an interactive scatter plot.

scatter_plot <- plot_ly(x = ~x, y = ~y, type = 'scatter', mode = 'markers')
scatter_plot
    • Explanation:
      • x = ~x and y = ~y: Define the x and y coordinates for the points.
      • type = 'scatter': Specifies a scatter plot.
      • mode = 'markers': Displays only markers (you can also try 'lines+markers').

B. Bar Chart

1.     Create Sample Data for a Bar Chart:

categories <- c("A", "B", "C", "D")
values <- c(20, 14, 23, 17)

2.     Create a Bar Chart:

bar_chart <- plot_ly(x = ~categories, y = ~values, type = 'bar')
bar_chart
    • Explanation:
      • x = ~categories: Defines the x-axis labels.
      • y = ~values: Defines the values for each bar.
      • type = 'bar': Specifies a bar chart.

C. Line Chart

1.     Create Data for a Line Chart:

time <- c(1, 2, 3, 4, 5)
values <- c(3, 7, 9, 6, 10)

2.     Create a Line Chart:

line_chart <- plot_ly(x = ~time, y = ~values, type = 'scatter', mode = 'lines')
line_chart
    • Explanation:
      • type = 'scatter' with mode = 'lines': This combination creates a line plot.
      • x = ~time and y = ~values: Define the x and y coordinates for the line.

Step 3: Customize Your Plots

You can customize colors, add titles, and adjust axis labels for each plot.

1.     Add Titles and Labels:

# Scatter Plot with Labels
scatter_plot <- scatter_plot %>%
  layout(title = "Interactive Scatter Plot",
         xaxis = list(title = "X Axis"),
         yaxis = list(title = "Y Axis"))
 
# Bar Chart with Labels
bar_chart <- bar_chart %>%
  layout(title = "Interactive Bar Chart",
         xaxis = list(title = "Categories"),
         yaxis = list(title = "Values"))
 
# Line Chart with Labels
line_chart <- line_chart %>%
  layout(title = "Interactive Line Chart",
         xaxis = list(title = "Time"),
         yaxis = list(title = "Values"))

2.     View Customized Plots: Display each plot with the customized labels.

scatter_plot
bar_chart
line_chart

Step 4: Explore Interactivity

Hover over the data points on each plot to see interactive information, and try zooming and panning. plotly provides built-in interactivity, including tooltips and customizable actions.


No comments: