Step 1: Install Required Libraries
Ensure you have the necessary libraries installed and loaded:
install.packages("ggplot2")install.packages("gganimate")install.packages("plotly") library(ggplot2)library(gganimate)library(plotly)
Step 2: Create an
Animated Plot with gganimate
We’ll first create a simple animated scatter plot showing the movement of
points over time.
- Prepare the Data:
# Sample data for animationset.seed(42)data <- data.frame( x = rnorm(50), y = rnorm(50), time = rep(1:5, each = 10), group = rep(letters[1:10], times = 5))
- Create the Animated Plot:
# Animated scatter plot with gganimatep <- ggplot(data, aes(x = x, y = y, color = group)) + geom_point(size = 4) + labs(title = 'Time: {frame_time}', x = 'X-Axis', y = 'Y-Axis') + transition_time(time) + ease_aes('linear') # Save the animationanim <- animate(p, nframes = 100, fps = 10, renderer = gifski_renderer())
Step 3: Export Animation Frames
Convert the gganimate
frames into individual images that can be used in plotly.
- Save Frames:
anim_save("gganimate_frames.gif", animation = anim)
Alternatively, save the individual frames as PNG files:
frame_images <- animate(p, nframes = 100, fps = 10, renderer = file_renderer(dir = "frames", prefix = "frame", overwrite = TRUE))
Step 4: Integrate with plotly for Interactivity
- Load Images into
plotly: Useplotlyto create an interactive slider for the frames.
library(magick) # Load the GIFframes_gif <- image_read("gganimate_frames.gif") # Extract individual framesframes_list <- lapply(seq_len(length(frames_gif)), function(i) {
frame <- image_write(frames_gif[i], format = "png") # Convert frame to PNG format
list(source = base64enc::dataURI(frame, mime = "image/png")) # Encode as Base64 URI
}) # Create the interactive plot# Create the interactive plot using plotly
plotly_animation <- plot_ly() %>%
layout(
sliders = list(list(
steps = lapply(seq_along(frames_list), function(i) {
list(
method = "restyle",
args = list("images[0].source", frames_list[[i]]$source),
label = paste("Frame", i)
)
})
))
)
# Add the initial image
plotly_animation <- plotly_animation %>%
add_image(
source = frames_list[[1]]$source,
x = 0, y = 0,
xanchor = "center", yanchor = "middle"
)
Step 5: Test the Integration
- Run the
above code to see your animated and interactive plot in the RStudio Viewer
or browser.
- Experiment
with the hover, zoom, and pan features provided by
plotly.
Step 6: Reflect and Experiment
- Experiment
with more complex
gganimateanimations, such as usingtransition_states()orview_follow(). - Add custom
interactivity in
plotly, such as hover text and annotations.

No comments:
Post a Comment